
MBTI Personality Analysis and Prediction

Yutao Zhou
UNI:yz4359

yz4359@columbia.edu

Jiarong Shi
UNI:js6132

js6132@columbia.edu

Qingcheng Yu
UNI:qy2281

qy2281@columbia.edu

Abstract

People behave differently when they are online compared
to offline. Therefore, it is hard to draw accurate and stable
user profiles. Our team believes personality is a great in-
dicator for predicting user behavior. Our group would use
big data analysis methods to predict user personality. More
specifically, we are using machine learning and statistical
methods to analyze users’ tweets to predict their personali-
ties.

In this report, we are first going to give an introduc-
tion to our project. Then, we reviewed the related lit-
erature presenting how others make use of users’ online
posts. After that, we introduced the data source we used, in-
cluding the MBTI datasets and the Twitter streaming data.
What’s more, we showed our methods from four perspec-
tives: Web application, Data Preprocessing, vectorization,
and Machine Learning Model. Following, we presented an
overview of our systems. Last, but not least we provided the
experiments we have done and concluded our project.

1. Introduction
In today fast growing technology, an exceptional amount

of data has been generated every day. This did a great favor
for analyzing user behavior. However, it is still very difficult
to predict user behavior because of the online disinhibition
effect. The online disinhibition effect is used to describe
the phenomenon that people behave more expressive and
intensely when they are online compared to in-person [12].
As a result, users’ behavior would be harder to predict on-
line. Also, users might have different behavior online com-
pared to real life. This is problematic because when doing
recommendations to the user, we would love to predict peo-
ple’s reactions when they receive our recommendation.

To address this problem, we are focusing on analyzing
users’ personalities and this would give us more information
to give better recommendations. For example, people with
different personalities might prefer advertising in different
styles even for the same product. Therefore, it could be eco-
nomically plausible to use users’ personalities as a baseline

for user images. Thurs, we propose this MBTI personality
analysis and prediction project to present the potential of
making use of using social media data.

Our group is using machine learning and statistical meth-
ods to analyze big data that users generate in their daily on-
line activity. When a user came to our website we would
collect the user’s tweets and use our pre-trained model to
predict the user’s personality. Then, we are going to show
the corresponding prediction results including introduction,
related jobs, similar people, and word cloud. We have com-
pared 6 models and decided to use Logistic Regression as
our model. After training the model with the MBTI dataset,
our precision, recall, and f1-score achieved 0.94.

We have developed a user-friendly online application
that would catch user tweets and make predictions. Also,
we paid great attention to visualizing the prediction re-
sult in intriguing ways to make it attractive. For exam-
ple, we have presented jobs that people with their person-
alities would usually take. Further, we showed pictures of
well know celebrities with the corresponding personality
type. Last, we included a word cloud that is formed with
social media posts from people with the same personality
as the user. The web application is deployed to GCP and
we plan to host it there for a few months. Therefore, users
who are interested could take a look and try out our fully
functional project. The link to our web application is here
http://34.23.131.207:5000/

2. Related work
This section includes three parts. Firstly, we discuss the

differences between the two main personality indicators,
which are the five-factor model(FFM) and Myers Briggs
Type Indicator(MBTI), and why we choose MBTI as an in-
dicator in our prediction system. Secondly, personality pre-
diction involves different kinds of datasets, we will have a
deep look into them. In addition, several feature extraction
methods are listed to compare their pros and cons between
them. Lastly, many different classification models vary
from traditional machine learning methods to deep learn-
ing methods that have been used for personality prediction.
We will analyze each of them.

1

http://34.23.131.207:5000/


Energy Extrovert Introvert
Information Sensing INtuition
Decision Thinking Feeling
Lifestyle Judging Perceiving

Table 1. 16 types of MBTI.

2.1. Different predictors of personality

The Five-Factor Model, also called the Big Five, is a per-
sonality testing framework that measures openness, consci-
entiousness, extroversion, agreeableness, and neuroticism.
The five-factor model was developed in the 80s and 90s
and is largely based on lexical assumptions, which suggest
that over time, basic features of human personality have
been encoded into language. This hypothesis on the other
hand proves the feasibility of predicting personality based
on texts.

Despite all its successes, the five-factor model has been
heavily criticized by many scholars. One problem involves
the lack of a comprehensive theory. The lexical hypoth-
esis, while interesting and reasonable, has been consid-
ered by some scholars to be too narrow to be a theory of
personality[4].

Different from FFM which is based on lexical hypothe-
ses or traits, MBTI is based on types, which include 16
types and 4 letter abbreviations. The first letter relates to
where the individual mostly derives their energy, the second
letter relates to an individual’s perceptual function, the third
letter is a personal judgment function, and the last letter
determines how an individual relates to the outside world.
They are shown in Table 1.

Many researchers prefer to use MBTI in their work in-
stead of FFM. For instance, in a recent study by Yoon et
al.[13], they found that MBTI preferences play a significant
role in online purchase decisions, while FFM had limited
impact.

2.2. MBTI datasets in online social platforms

The choice of the dataset can significantly affect the ac-
curacy of the model. The most popular MBTI datasets are
Twitter users datasets1, the MBTI dataset on the Kaggle
website2, the Corpus of Reddit comments and posts labeled
with MBTI personality types MBTI19k dataset3, and 8k
MBTI dataset from Personality Cafe4. Many related works
about personality prediction used these datasets, and they
mostly achieved positive results. However, Lukito et al.[8]
have trained the Naive Bayes model on the Twitter dataset in
Bahasa Indonesian language. Although the algorithm used
is efficient but due to the dataset drawback, the result is bad.

2.3. Feature extraction methods used in MBTI pre-
diction

Multiple NLP methods are used when dealing with
text data. Firstly we should extract features from the
text and convert the human language text into computer-
understandable vectors or matrices.

Latent Dirichlet Allocation (LDA) is one of the feature
dimension reduction methods, where each document can be
described by a distribution of topics and each topic can be
described by a distribution of words. When the sample clas-
sification information of LDA relies on variance instead of
mean, the dimensionality reduction effect is not good and
the data may be overfitted. Gjurkoviic et al.[3] used an LDA
model to deduce topic distribution from user comments, but
found that the LDA was not very good at predicting MBTI.

The bag of words is a simple feature extraction method,
which detects whether a document contains certain words
in a dictionary. The bag of words model method is simple,
fast, and sometimes for short text processing has a good
effect. However, it ignores the syntax and semantic infor-
mation in the text, resulting in the loss of important infor-
mation.

TF-IDF, TF stands for Term Frequency, and IDF refers
to Inverse Document Frequency. The TF-IDF model can
estimate the importance of a word to a document in a docu-
ment set. The more times a word appears in a document, the
more important the word is to the document, and the more
frequently it appears in the document set, the less important
the word is. Also in Gjurkoviic et al.[3], the best model
in the research uses TF-IDF weighted n-grams over logis-
tic regression. However, same as the bag of words model,
TF-IDF ignores the relationship between each word in the
document and fails to take into account important informa-
tion such as word order, semantics and syntax. Mikolov[1]
et al. proposed CBOW(Continuous Bag-of Words) model
and the Skip-gram model respectively. The CBOW model
is based on the content of the context to infer the possible
probability of the central word, while the Skip-gram model
is based on the known central word to infer the content of
the context. The way of word embedding considers the re-
lationship between words in the sentence and expands the
word vector to higher dimensions, which has better gener-
alization ability.

2.4. Classification methods used in MBTI prediction

Over the years many different models have been at-
tempted to predict personalities. Logistic regression is one
of the most commonly used machine learning algorithms,
which generally works with binary classes. Plank et al.[9]
used the LR model on the Twitter dataset to classify MBTI
personality types. Raje et al.[10] also used the LR classifi-
cation model to predict personality types and found that it
was better than several neural network models.

2



Naive Bayes models assume that feature conditions are
independent of each other and classify them based on
Bayes’ theorem, resulting in a low error rate and high com-
putational efficiency. Moreover, the algorithm itself is sim-
ple and easy to understand and has been widely used in the
field of text classification. However, Rennie et al.[11] stated
that multinomial NB could not model text data well because
the text is not generated according to a multinomial model.

KNN, NN means the nearest neighbor, and k is referred
to the number of neighbors to be considered. KNN is a
classification algorithm that has high accuracy and stability,
but it will lead to error in the face of sample imbalance. Li
et al.[6] used this classifier on MBTI prediction and they
aimed to compare and find the best distance computation
approach for KNN in MBTI personality prediction.

The goal of a support vector machine (SVM) is to find
a suitable linear separator between different categories. In
SVM, the linear indivisible problem is transformed into
a higher dimensional space using the nuclear technique.
Common kernels are radial basis function, polynomial ker-
nel, and Gaussian function. Bharadwaj et al.[2] compared
SVM with NB and Neural Net Model and found that SVM
outperformed the others in MBTI prediction.

A random forest is a classifier containing multiple de-
cision trees, and its output category is determined by the
mode of the categories output by individual trees. In Lima
et al.[7] the study, random forest outperformed SVM and
NB across multiple feature sets in MBTI prediction.

Pre-trained language models are a new but useful
method for model training. For example, Bidirectional
Encoder Representations from Transformers (BERT) is a
transformer-based machine learning technique for natu-
ral language processing (NLP) pre-training developed by
Google. Kel et al.[5] used BERT on the personality cafe
dataset on Kaggle and obtained a better result.

3. Data
Datasets are essential for model training because they

must be carefully curated to ensure that they are representa-
tive of the problem being solved and contain enough data to
accurately train the model. Generally, to fully understand
and see the whole picture of one dataset, we always use
a 3Vs model. The 3Vs of data are Volume, Variety, and
Velocity. Volume refers to the amount of data that is avail-
able, Variety refers to the different types of data that are
available, and Velocity refers to the speed at which data is
generated and processed. Our project has two parts, firstly
we tend to train a machine learning model, then we crawl
users’ tweets to do MBTI personality type prediction. So
our project involves two kinds of data, which is the MBTI
dataset in Kaggle and Twitter streaming data. In the fol-
lowing, we will briefly introduce the reason we choose the
dataset and discuss the 3V dimensions of these two data

Figure 1. A quick look at the MBTI datasets.

separately.

3.1. MBTI datasets

To train a machine learning model which takes texts from
social platforms as input and MBTI personality type as out-
put, we need a kind of data that is extracted from social
media platforms and has corresponding personality type la-
bels. And this MBTI Personality Types 500 Dataset from
Kaggle is quite a fit.

The volume dimension of this dataset is 346.05MB large
and has about 106k preprocessed records of posts and per-
sonality types. For the variety dimension of the dataset,
there are two columns of the data, and the data are extracted
from two sources. As we can see in Figure 1, The post
data are preprocessed texts which have no punctuations,
stopwords, or URLs, have finished lemmatization, and have
been reconstructed into equal-sized chunks (500 words per
sample). The second column is a personality type, which
has 16 unique values. Most parts of the data are collected
from Reddit using Google big query by Dylan Storey, the
remaining parts are collected from the PersonalityCafe fo-
rum, where each record has the last 50 posts written by the
corresponding user. The velocity dimension of the dataset
is an existing dataset that has stopped updating. To remedy
this, in the next part we use Twitter streaming data which
will change over time, and in the future, we could collect
data from the web application we built and extend the exist-
ing dataset.

We can also take a quick look at the data distribution.
From figure 2 the number of samples for 16 types of per-
sonality in the original dataset, we can see that this is an
imbalanced dataset. The most numerous personality type
is INTP, which makes up about a quarter of the data and it
is unreal in the natural world. To fix this problem, in the
later part of the article, we described how we use down-
sampling or upsampling methods for data class balance and
achieve better accuracy. Fig X shows the distribution across
types of indicators, and also can find the imbalance prob-
lem, while in other words the imbalanced data also shows

3



Figure 2. Distribution across types indicators.

Figure 3. Raw streaming data from Tweeter.

what categories of people are more inclined to use these so-
cial networking sites.

3.2. Twitter streaming data

Tweet streaming data is data that is collected from Twit-
ter in real-time. This data can be used to analyze trends,
sentiment, and other insights about what people are saying
on the platform. To predict the user’s current personality
type, we use the most recent tweets of a user. If a user does
not have enough tweets to meet the minimum text length
requirement of our model, we just copy his or her tweets to
get 500 words. Actually, the number or length of tweets has
an effect on prediction accuracy.

We collect tweets using functions in a python package
called tweepy. Firstly we apply for a consumer key, a con-
sumer secret, an access token, and an access token secret to
get an authorized tweepy client, then we use the get user()
function to convert the user name which the user entered
into our system into the user id. After that, we use the
get users tweets() function and user id to get the user’s
tweet. Except for the id field, there are other parameters
that we can modify in this function. For example, tweets
to try and retrieve, up to a maximum of 100 per distinct re-
quest. If one user’s most recent tweets are all too short to
meet the 500 words length requirement, we can change the
start time field to request tweets in older times. A picture of
the response to the request is shown in Figure 3, as we can
see there are some tag fields, emojis, and URLs in the origi-
nal tweets, so the data preprocessing is of great importance.

4. Methods

4.1. Web Application

We built a web application to demonstrate the result and
interact with people, and we used a number of methods to
implement this. A lightweight web application framework
called Flask is the main architecture for a website. We use
python to write the backend code and develop route API
to handle requests from the front. In the front end, we use
HTML, CSS, and JavaScript to build webpages.

4.2. Data Preprocessing

The methods we used in this project are divided into
three sections depending on the purpose. First of all, data
preprocessing and feature extraction are necessary for Twit-
ter streaming data. In order to fit the format of the MBTI
dataset, we need to filter punctuation, stopwords, and emoji
in the original tweets. Then implement lemmatization to
convert tweets to the normal format (no state of affairs).

Moreover, the samples in the dataset distribute unbal-
anced, and some of the features only contain a few records.
Therefore, we use oversampling and undersampling to re-
construct the dataset to make it balanced. There are two
oversampling techniques are implemented in our project,
random oversampling and Synthetic Minority Oversam-
pling Technique (SMOTE). Random oversampling refers to
duplicating the samples from the minority class. There-
fore, it may increase the likelihood of occurring overfit-
ting, since it makes exact copies of the minority class ex-
amples. The defect of random oversampling is it does not
give variation to the ML model and only has limited perfor-
mance improvement. SMOTE method is an improvement
in duplicating examples from the minority class. It synthe-
sizes new examples according to the feature space. SMOTE
creates larger and less specific decision boundaries that in-
crease the generalization capabilities of classifiers, there-
fore increasing their performance. Because SMOTE creates
new samples instead of simpling duplicates of similar sam-
ples. it will lead to a better prediction model than random
oversampling. Therefore, we finally choose SMOTE as our
oversampling method.

4.3. Vectorization

Because we do text classification, the input of the text
document should convert into a numerical representation
that can be adapted to machine algorithms to make predic-
tions. The method we use is TfidfVectorizer. Tokens gener-
ated by this method are followed by the matrix of TF-IDF
features. TfidfVectorizer has regulations that can adjacent
the weight of tokens that occur frequently and tokens that
occur rarely. Therefore, it can extract primary features bet-
ter than a normal vectorizer.

4



4.4. Machine Learning Model

Moreover, the samples in the dataset distribute unbal-
anced, and some of the features only contain a few records.
Therefore, we use oversampling and undersampling to re-
construct the dataset to make it balanced. There are two
oversampling techniques are implemented in our project,
random oversampling and Synthetic Minority Oversam-
pling Technique (SMOTE). Random oversampling refers to
duplicating the samples from the minority class. There-
fore, it may increase the likelihood of occurring overfit-
ting, since it makes exact copies of the minority class ex-
amples. The defect of random oversampling is it does not
give variation to the ML model and only has limited perfor-
mance improvement. SMOTE method is an improvement
in duplicating examples from the minority class. It synthe-
sizes new examples according to the feature space. SMOTE
creates larger and less specific decision boundaries that in-
crease the generalization capabilities of classifiers, there-
fore increasing their performance. Because SMOTE creates
new samples instead of simpling duplicates of similar sam-
ples. it will lead to a better prediction model than random
oversampling. Therefore, we finally choose SMOTE as our
oversampling method.

In order to improve the accuracy of prediction, we try
different classification models such as Logistic Regression,
LinearSVC, Naive Bayes, Random Forest, and KNN. The
reason we chose these classifiers is that our project is a
multi-class classification. There is a total of 16 classes cor-
responding to each type of classification.

We also try to use the poly Kernel SVC method to train
the model but it does not work. The reason we consider this
ploy Kernel has excessive complexity when dealing with
a mass of data. Moreover, we try to use PySpark to train
our model but the results get from PySpark using the same
method are different from the result using python only. In
Figure 4, we show the accuracy of the logistic regression
model in PySpark is approximately 0.91. However, accord-
ing to Table 2, the best result for logistic regression is 0.94.
The reason may be the algorithm for PySpark has a litter
difference. Finally, we decided to choose the higher accu-
racy method and not use PySpark.

5. System Overview

Our software mainly consists of three parts in terms
of functionality: Website, Tweet fetching, and Machine
learning models. From a web development standpoint, our
project has a front end that is written in CSS and HTML and
a back end that is written in Python with Flask.

Figure 5 is a system flow chart for our systems. The
dataset comes from Kaggle and is a trained NLP model on
the Google Cloud Platform (GCP) virtual machine, and it is
part of Web application development. The Web application

Figure 4. Logistic regression model results come from PySpark

Figure 5. A flow chart for our system.

Figure 6. Landing page of the web application.

requests the streaming data from API provided by Twitter,
and finally, it will display the visualization figures and pre-
dict results to the User. The User should enter their Twitter
User Id to get these results.

For our website, We formulate the structure of our web-
site with Python. More specifically, we used a Python pack-
age called Flask as a backend that connects and render each
HTML template. The entire backend functionality is hap-
pening in the ‘app.py’. When the user came to our website
they will first see the landing page that is rendered from ‘in-
dex.html’. The landing page is shown in figure 6.

The user would enter their user name in the search bar
located at the center to predict their personality. At the mo-
ment that the user pushed the ‘enter’ button, the backend
would use that username to fetch the nearest 100 tweets
from the Twitter API by using the tweepy python packet.
After getting all of the tweets we are going to lower all let-
ters, strip out unnecessary space, and split out each word by

5



Figure 7. INTJ result.

Figure 8. INTJ result continues.

Figure 9. INTJ result continues.

space. Now, we would use a regular expression to filter out
non-English letters like emojis and other non-textual con-
tent. Also, each word is matched with our stopwords dic-
tionary, which I would explain later, to filter out stopwords.
After we cleaned the data, we need to make sure the input
to the machine-learning model is exactly 500 words. There-
fore, we would use list concatenation to copy the data if we
do not have enough words and crop it to make sure there
are 500 words. The runtime could be improved by some
easy tricks in iteration. But, we decided to use the easy
way since our website is more than fast enough. Then the
saved machine learning model would be used to make the
prediction. After that, we would match the prediction result
and use load the corresponding template. This part could be
improved with a radix tree and some basic string-matching
algorithms. But, we only have 16 possible results each with
a short name. Therefore, we abandoned to do so. If the
username does not exist, we could not fetch corresponding
tweets. On such occasions, the user will be redirected to
the landing page to retry. An example result for the INTJ
personality type is shown in figure 7-9.

We have also developed an about page that gives a brief
introduction to Why people should care about their MBTI.

Figure 10. A screen shot of the About page of our web application.

Figure 11. A screen shot of the Model page of our web application.

Figure 12. A screen shot of the Model page continue of our web
application.

Also, our roles and pictures are presented here. The about
page is shown in figure 10. What’s more we have also in-
cluded a model page that introduces our machine learning
model and gives information about the dataset we used. A
screenshot of our model page is shown in Figure 11-12.

Let me briefly explain the structure of our code to give
you an overview of our system. All of the codes for our web
application are in the ‘Web Application’ folder. For sim-
plicity, from now on I would refer to the ‘Web Application’
folder as the ‘root directory’ in our system. Under the root
directory, there are three folders and one python file. The
Python file ‘app.py’ is the main python script that is going to
connect different HTML pages together, fetch user data, and
use the model to predict the user’s personality. The three
folders are ‘model’, ‘static’, and ‘templates’. The ‘model’
folder contains all of the files that are necessary to predict
the personality of the user. The ‘static’ folder contains all of
the images on our websites and the CSS style sheet used to

6



Figure 13. Github directory.

render our web pages. The ‘templates’ folder contains all of
the HTML files which is used to build all of the content of
our page. A screen shot of our ‘Web Application’ directory
is in figure 13.

Now let’s dig into our machine learning models. In the
folder ‘model’, there are three files. The first one is ‘lm.sav’,
this is the saved machine learning model that we are going
to use to predict the user’s personality. The second one is
‘stopwords.txt’ which is a text file that contains all of the
stopwords we used to filter the tweet that we fetched from
the Twitter API. The third one is ‘vec tfidf.pkl’, this is a
pickle file that is used for tokenizing words. This is nec-
essary because we need to convert words into vectors for
training.

The machine learning model was trained with a Jupyter
notebook named ‘Logistic Regression.ipynb’. It was trained
on the balanced over-sampling MBTI Personality 500
dataset. After the training, it is saved for our systems to
use. A flow chart for our system is shown in figure X.

These are the continent of our systems. Now, I would
like to present the deployment of our systems. Our sys-
tem is written with the Flask packet. The deployed environ-
ment is greatly simplified. We created a Google Cloud Plat-
form(GCP) compute engine virtual machine. The GitHub
was cloned there and the needed packet was installed. The
project would be hose on the VM and as long as we don’t
shut off the VM it is going to have a fixed public IP. One
thing that is worth mentioning is the firewall rule has to be
set up to allow all traffic coming into our VM. We have set
up the firewall to match ‘0.0.0.0/0’. This would match all
traffic because this prefix has a length of 0. A detailed view
of the firewall setting on GCP is shown below in figure 14.

Figure 15-17 shown all of the packet We have used for
our system.

Our systems could mainly be improved on the machine
learning system design aspect. We are currently using a
static pre-saved model. This could be improved by saving
fetched user tweets. Then we could let the user input the
personality they believe they belong to. Thurs, we have cre-
ated additional data that could be used to retrain and im-

Figure 14. A screenshot from GCP of our firewall rules.

prove the model. Where the text data are the content of
the processed tweets and the label is the personality that the
user selected. We could then interest this entry into an SQL
database. Then we could use Airflow to schedule and re-
train the model with the new dataset once a week or once

7



Figure 15. Packets we used in machine learning model training.

Figure 16. Packets we used in machine learning model training.

Figure 17. Packets we used in web application.

a month. More specifically, we could put the entire dataset
into an SQL and add an additional entry to the database
for every user that entered their user name and used our
website. Every week we could let the scheduled Airflow
program fetch the SQL database and use the entire larger
database for training. As a result, as more and more users
use our web application our model will have better accu-
racy. We have come up with this system in our group dis-
cussion. But, we did not implement this because of our busy
schedule.

6. Experiments
We will focus on personality prediction using text data

or more precisely social media text data. Therefore two
main parts of experiments are performed depending on the
purpose. First of all, data preprocessing and feature extrac-
tion are necessary for Twitter streaming data. In order to fit
the format of the MBTI dataset, we filter punctuation, stop-
words, and emoji in the original tweets. Then implement
lemmatization to convert tweets to the normal format (no
state of affairs). Because the text size in the original dataset
is 500 words, it is necessary to check the length of the max-
imum number of text gained from API at once. When text
has less than 500 words, tweet data will be recaptured again
at another time period to satisfy the constraint. On the other
hand, if the text has larger than 500 words, we will intercept
the first 500 words from the text. The example is shown be-
low in Figure 18 and Figure 19.

Moreover, the dataset is do oversampling to solve the
problem that the amount of data collected is insufficient.
The distribution of samples in the dataset is imbalanced
because some of the features only contain a few records.

Figure 18. Streaming data from Twitter API before preprocessing.

Figure 19. Streaming data from Twitter API after preprocessing.

Aim at unbalanced data sets may lead to severe bias against
larger classes, while classes with fewer data points are con-
sidered noise and ignored. Therefore, we use oversampling
to reconstruct the dataset to make it balanced. We compare
the performance of random oversampling and SMOTE. Fi-
nally, we choose to use SMOTE because it provides better
prediction result. Figure 20 and Figure 21 show the number
of samples in each class before and after SMOTE oversam-
pling. In Figure 21, each class has an equal data size.

The second part of our experiments performed is train-
ing machine learning models of text classification to make
predictions. As we mentioned before, we used five different
classifiers to train our model (Naive Bayes, LR, LinearSVC,
k-NN, and RF). For the Naive Bayes classifier, the data as-
sociated with each feature is assumed to be distributed in a
designed distribution. Therefore, we decided to use differ-
ent sample distributions for training models. Because there
are 16 types of personalities, the multi-classes classifier is
needed. Finally, we use the Gaussian Naive Bayes classifier
and Complement Naive Bayes. For all these six methods,
we separate the sample set into two parts: the training set
and the test set. The training set contains 80% of the sam-
ples, and the test set contains 20% of the samples. Firstly,
we used the original dataset which is imbalanced to estab-
lish models, the result is not good enough. Table 2 shows
the detailed information of each model using the untreated
dataset. There are three main parameters to determine the
performance and adaption of models which are precision,
recall, and f1-score. The precision is the ratio of the number
of true positives and the total number of samples, it mea-
sures the amount of variance and uncertainties of the data
not explained by the fitted values of the model. The recall
suggests the proportion of true positives relative to the sum
of true positives and false negatives. The f1-score can be
interpreted as a weighted harmonic mean of the precision
and recall. Table 3 shows the detailed information of each
model using a balanced dataset after SMOTE.

Comparing Table 1 and Table 2, it is obviously observed
that models training after oversampling has better perfor-
mance than models training without oversampling. Figure

8



Model Precision Recall f1-score
Naive Bayes - BernoulliNB 0.21 0.17 0.16
Naive Bayes - ComplementNB 0.26 0.29 0.23
Logistic Regression 0.83 0.65 0.71
Linear SVC 0.81 0.69 0.74
KNN 0.55 0.47 0.60
Random Forest 0.65 0.77 0.80

Table 2. Accuracy for different models trained on Original dataset

Model Precision Recall f1-score
Naive Bayes - BernoulliNB 0.78 0.74 0.73
Naive Bayes - ComplementNB 0.72 0.68 0.66
Logistic Regression 0.94 0.94 0.94
Linear SVC 0.90 0.90 0.90
KNN 0.65 0.57 0.49
Random Forest 0.87 0.86 0.86

Table 3. Accuracy for different models trained on over-sampling
dataset

Figure 20. Original MBTI dataset.

Figure 21. Over-sampling MBTI Dataset using SMOTE method.

22 is a line chart showing the difference between three pa-
rameters between six different models. According to Figure
22, the Logistic Regression classifier is the best model we
have because it has the highest value of precision, recall,
and f1-score. Figure 23 is the classification report for our
best model. Figure 23 figures out that the precisions are
greater than 0.95 for most classes, and the lowest value is
higher than 0.8.

7. Conclusion
In this project, we build an MBTI personality prediction

system, which takes users’ Twitter usernames as input and

Figure 22. Original MBTI dataset.

Figure 23. Detailed result for logistic regression with the over-
sampling dataset. The overall precision of 0.94

returns personality type results based on tweets. To achieve
accurate prediction, we preprocess the Twitter streaming
data crawled by Twitter API. Then upsampling and down-
sampling are performed on the original MBTI dataset. For
classification models, we have tried Naive Bayes, LR, Lin-
earSVC, k-NN, and RF algorithms, compared precision, re-
call, and f1-score parameters between them and it shows
that Logistic Regression has the best performance. At last,
we develop a user-friendly web application using python
and Flask as the backend, and JavaScript, HTML, and CSS
as the front end. We integrate the best prediction model
into the web and a user could easily get his or her recent
MBTI personality type prediction by just entering the Twit-
ter username. Moreover, they could have more information
about their personalities like job preferences and similar
people with the same personality type. We have deployed
the whole system to GCP and we welcome you to visit our
website and play around.

9



References
[1] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Janvin. A neural probabilistic language model. J.
Mach. Learn. Res., 3(null):1137–1155, mar 2003. 2

[2] Srilakshmi Bharadwaj, Srinidhi Sridhar, Rahul Choudhary,
and Ramamoorthy Srinath. Persona traits identification
based on myers-briggs type indicator (mbti)-a text classifica-
tion approach. In 2018 international conference on advances
in computing, communications and informatics (ICACCI),
pages 1076–1082. IEEE, 2018. 3

[3] Matej Gjurković and Jan Šnajder. Reddit: A gold mine for
personality prediction. In Proceedings of the second work-
shop on computational modeling of people’s opinions, per-
sonality, and emotions in social media, pages 87–97, 2018.
2

[4] Lewis R Goldberg. The structure of phenotypic personality
traits. American psychologist, 48(1):26, 1993. 2

[5] Sedrick Scott Keh, I Cheng, et al. Myers-briggs person-
ality classification and personality-specific language gener-
ation using pre-trained language models. arXiv preprint
arXiv:1907.06333, 2019. 3

[6] Charles Li, Monte Hancock, Ben Bowles, Olivia Hancock,
Lesley Perg, Payton Brown, Asher Burrell, Gianella Frank,
Frankie Stiers, Shana Marshall, et al. Feature extraction from
social media posts for psychometric typing of participants.
In International Conference on Augmented Cognition, pages
267–286. Springer, 2018. 3

[7] Ana Carolina ES Lima and Leandro Nunes de Castro. Tecla:
A temperament and psychological type prediction frame-
work from twitter data. Plos one, 14(3):e0212844, 2019.
3

[8] Louis Christy Lukito, Alva Erwin, James Purnama, and Wu-
lan Danoekoesoemo. Social media user personality classifi-
cation using computational linguistic. In 2016 8th interna-
tional conference on information technology and electrical
engineering (ICITEE), pages 1–6. IEEE, 2016. 2

[9] Barbara Plank and Dirk Hovy. Personality traits on twit-
ter—or—how to get 1,500 personality tests in a week. In
Proceedings of the 6th workshop on computational ap-
proaches to subjectivity, sentiment and social media anal-
ysis, pages 92–98, 2015. 2

[10] Mehul Smriti Raje and Aakarsh Singh. Personality detection
by analysis of twitter profiles. In International Conference
on Soft Computing and Pattern Recognition, pages 667–675.
Springer, 2016. 2

[11] Jason D Rennie, Lawrence Shih, Jaime Teevan, and David R
Karger. Tackling the poor assumptions of naive bayes text
classifiers. In Proceedings of the 20th international confer-
ence on machine learning (ICML-03), pages 616–623, 2003.
3

[12] John Suler. The online disinhibition effect. Cyberpsychology
& behavior, 7(3):321–326, 2004. 1

[13] Myeong-Yeon Yi, O Lee, Jason J Jung, et al. Mbti-based col-
laborative recommendation system: a case study of webtoon
contents. In ICCASA, pages 101–110. Springer, 2015. 2

8. Contribution
For all of the presentations PPT, we split equally by the

number of slides. For the progress report, we split equally
be sections. Jiarong Shi and Yutao Zhou both wrote the CSS
and wrote the ‘app.py’ and other corresponding files that are
related to web development. Qingcheng Yu and Jiarong Shi
both wrote codes for extracting tweets from Twitter API.

8.1. Yutao Zhou

Wrote 10 MBTI personality pages. Wrote model page.
Deployed the web application to GCP. Wrote the Abstract,
Introduction, and System Overview part of the final re-
port. Wrote Latex to transform content teammates write
on Google docs to Latex for submission. Responsible for
editing and uploading Youtube videos.

8.2. Jiarong Shi

Wrote 6 MBTI personality pages. Wrote about page.
Wrote Home page. Wrote website structure. Wrote the
Data, Related Work, Method(Web Application), and Con-
clusion part of the final report. Trained Neural Network
model.

8.3. Qingcheng Yu

Implemented dataset to a balanced state. Trained model
use KNN, Logistic Regression, Random Forest, Naive
Bayes, and LinearSVC. Used Pyspark to build a model and
compare the results with Python. Wrote Method (Data Pre-
processing, Vectorizer, and Machine Learning Model) and
Experiment part of the final report.

10


