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Abstract—This report presents the entire process of reimple-
menting the Swin Transformer. The generic architecture has been
re-implemented, which can be used to achieve different variants
of Swin Transformer, such as Swin-T, Swin-B, etc, by specifying
different sets of parameters. I tested this archetecture on two
datasets - the imagenet1K 1 and the cifar100 dataset 2. However,
due to resource constraints, I cannot train the imagenet1K
efficiently. On Cifar100, I achieved 46.7%(80 epochs) total
accuracy with the Top 5 accuracy being 72.96%(80 epochs). In
this report, the original Swin Transformer paper was summarized
with a comparison with the literature. Next, I elaborated on
the implementation details. In the end, I presented the result of
the experiment and discussed the challenges I faced during the
implementation.

Index Terms—TensorFlow, Image Classification, Swin Trans-
former, Cifar100

I. INTRODUCTION

This project is a replica of the original ”Swin Transformer:
Hierarchical Vision Transformer using Shifted Windows” pa-
per. I studied the original work and replicated the Swin
Transformer architecture by using the deep learning library
- TensorFlow.

II. SUMMARY OF THE ORIGINAL PAPER

The transformer has a long history of being great at
machine translation since 2017 [3]. Before the appearance
of the transformer, it is hard to learn dependencies that are
distant [?] without using Recurrent Neural Network(RNN) or
Convolution [3]. The transformer is good at effectively learn-
ing distanced dependency. This characteristic makes recurrent
make it shine in Natural Language Processing (NLP) domain.
In 2021, A research group at Google introduced Vision
Transformer(ViT) to apply transformer-based architecture to
Computer Vision(CV) domain [2]. They improved on existing
architectures and used a larger large dataset(ImageNet-21k
and JFT-300M) to train the model [2]. Subsequently, Vision
Transformer could outperform state-of-the-art CNNs in im-
age classification. Further, the Swin Transformer uses Vision
Transformer as a cornerstone and creates a model that could
accomplish more general computer vision tasks like image
classification, object detection, and semantic segmentation. All
in all, a transformer has proven effective in both NLP and CV.

1https://image-net.org/challenges/LSVRC/2012/index.php
2https://www.cs.toronto.edu/∼kriz/cifar.html

A. Methodology of the Original Paper

Convolutional neural networks (CNNs) have dominated the
computer vision domain. Whereas, transformers have always
been the backbone of natural language processing (NLP) mod-
els. These two architects have been extraordinarily successful
in their own domain. However, scholars have always sought a
way to make cross-filed applications. In the original paper, the
authors are trying to apply transformers to computer vision.
This adaptation would be challenging because the structures
of natural language and images are different in many ways.

Transformer use tokens to process word input, and use
tokenized words for model training. Tokenization is efficient
because words in natural language are similar and would
not expand to a wide range. Depending on the Tokenization
method, a fixed-size dictionary might be used. But, this is not
true in images. Pixies could vary substantially in scare and
sample from the sample. It would not be possible to build
such a fixed scale ’dictionary’ efficiently. Another problem
is images have higher resolution compared to words. For
example, a 720x720 image would have 518.4K pixels not
to mention there are usually three to four channels for an
image. This would be the length of a novel in natural language
case [1]. What’s more some vision applications like semantic
segmentation require pixel-level predictions. As a result, the
transformer would struggle to perform efficiently.

B. Key Results of the Original Paper

The original paper proposed Swin Transformer overcome
the performance issue. It combined ideas from CNN and
Transformer and achieved great, more than 80% accuracy,
geniality in image classification, object detection, and semantic
segmentation. Also, it has a lower real-life latency compared
to the original Transformer. One of the largest advantages of
the Swin Transformer is its efficiency. The previous Trans-
former based architectures have quadratic complicity. This is
because it uses a single-resolution feature map. In contrast,
Swin Transformer achieves linear efficiency by using non-
overlapping windows. The number of patches in each window
is fixed, as a result, a linear complexity would be achieved.

In traditional sliding window-based self-attention ap-
proaches, the connectivity is preserved because of the use of
one feature to slide on the entire window. On account of non-
overlapping windows, the connectivity between windows has
been eliminated. To address this problem, the original paper
designed shifted window approach. The architects always have



two consecutive Swin transformer blocks. In the first block,
the entire window is partitioned into four equal size windows
by cutting in the middle of the width and height of the image.
The attention in block one is going to be on local windows
only. In the second block, the entire window would be shifted
by half of the window size. After shifting the three sections
of the original image that is outside of the new window
would be used to fill in the blank space in the new window
position. Now, the attention is going to be on the newly formed
windows. Nevertheless, the new window would have some
segments that are not connected in the original image. So, a
mask would be used to constrain the attention to only part
of the window that is connected in the original image. With
a shift window and two continuous block approaches, the
connectivity problem has been solved.

III. METHODOLOGY

I kept the exact structure as the original paper. However,
I did train it on a smaller dataset because of the limited
computational resource I have. After starting the project, I
realize the resource problem in GCP and the stableness of the
remote Jupyter Notebook are not as good as the local machine.
Therefore, I move most of the training, to the local machine
and only use GCP for environment compatibility checks. The
original ImageNet 22K was not used because of the limited
computational power we have3. I will discuss this in detail in
the discussion section. We have chosen to use the CIFAR-100
and ImageNet2012 subset datasets instead. I would discuss
more regarding the reason later in the discussion part.

A. CIFAR-100

I have mainly conducted my experiment on CIFAR-100
because this is a standard dataset that my GPU could handle
efficiently. I have done some pre-filtering on the parameters
that I am going to adjust. First, I tested different layer numbers
for the base model. I tried to keep the exact layer numbers
as the Swim-T, which is 2,2,6,2 for each stage, version in
the paper. However, I realized no matter what parameters I
set, the model is barely learning anything with the training
accuracy below 10%. I suspect this is because my model
is too expressive for CIFAR-100. The original paper used a
way larger dataset(137GB) than CIFAR-100(162MB). I will
discuss the model capacity more in the discussion session. So,
I reduce the layer number dramatically. Eventually, I observed
the best layer number for CIFAR-100 is 1,1,2,1. Then, I tested
the number of heads and fixed it to 2,2,4,8 which is very small
compared to Swin-T(3,6,12,24). Still, this setup is used to limit
model capacity. These two steps are used to make sure we have
a reasonable size model for our dataset. Then, I tested three
learning rates at (0.01, 0.001, 0.0001). I kept the best learning
rate of 0.001. I did not perform any further experiments on the
learning rate and formally start my experiment. The general
experiment method is to control variables with independent
variable tuning. For every group of experiments, there would

3On VM I have 1 V100 GPU. On the local machine I have access to 2
1080Ti GPUs

only be one parameter to be changed. After I have found the
best parameter for one variable I would generally keep it fixed
for the rest of the experiment.

There are six parameters been experimented with. They
are Batch Size, Window Size, Embedding Dimension, Max
Dropout Layer Probability, Dropout Probability, and Attention
Dropout Probability. A detailed table of parameter values
tested is shown in TABLE I.

TABLE I
DETAILS OF PARAMETERS SETTING THAT HAS BEEN TESTED.

Parameters Values Experimented
Batch Size 128, 256, 512, 1024
Window Size 2, 4, 8
Embedding Dimension 16, 32, 64, 128
Max Dropout Layer Probability 0.1, 0.15, 0.2, 0.25, 0.3, 0.35
Dropout Probability 0.1, 0.15, 0.2, 0.25, 0.3, 0.35
Attention Dropout Probability 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

B. ImageNet2012 subset

For the ImageNet2012 subset, I have trained two models.
The ImageNet2012 subset is a 20GB dataset with each image
size that is a lot larger than 32 by 32. Therefore, I have
increased the model capacity greatly, with the same number
of blocks per layer, or stage, setting as Swin-T. For the first
model, I trained 40 epochs. This takes about 6 hours on 2 GTX
1080Ti. After inspecting the training history. I validation loss
is still decreasing, and validation accuracy is still increasing. In
other words, the model has not converged and did not overfit
after 40 epochs. Thus, I retrained the model and set the number
of epochs to 200 while keeping other parameters the same. The
training took about 32 hours. The detailed parameters setting
are in TABLE II.

TABLE II
DETAIL OF PARAMETERS SETTING FOR IMAGENET2012 SUBSET.

Paramiters Values Experimented
Learning Rate 0.0001
Batch Size 72
Number of Epochs 40(200)
Window Size 7
Embedding Dimension 96
Number of Blocks(for each stage) 2, 2, 6, 2
Number of Heads(for each stage) 3, 6, 12, 24
Weight decay 0.0001

C. Objectives and Technical Challenges

The object of this project is to build a deep learning
model that could recreate the original experiment result. More
specifically, I focused on the image classification tasks in the
original paper.

The largest problem I have faced in my recreation is the
shortage of computational resources problems. After I have
finished building the model on my local machine, I plan to
migrate all of the codes to GCP and train the model there. I
first used the class VM setup to train the model with ILSVRC



2012 dataset. The class VM setup is 2vCPU, 7.5GB memory,
and NVIDIA Tesla T4 with 100GB of Storage. With this
setup, the original data, which is 137GB, is larger than the
storage. Therefore, I create another VM with the same setup
and 500GB of Storage. After I download and preprocess the
dataset. I faced the main issue that I did not find a good way to
solve. The original paper used a batch size of 1024. However,
I was only able to set to batch size to 64. A larger batch
size would cause the GPU to run out of memory. With the
batch size at 64, the model is training extremely slowly. This
is understandable because the dataset is very large. Therefore,
I decided to create a more powerful VM for the training.

I tried to create a VM with NVIDIA A100 40GB GPU, and
12vCPU, 85GB memory. However, only very limited zones
have the A100 40GB GPU, and within those, there is not
enough CPU resource. All possible zones had been tried. But,
none of them have enough resources to create the VM. Thurs,
I created a VM with NVIDIA V100 GPU this is the only
selection available that is closest to A100. But, it only has
16GB of Memory. I tried to run the model with ILSVRC 2012
dataset again. Still, the training is extremely slow.

Then, I tried to use local machines for training. My local
machine has 2 GeForce GTX 1080Ti GPUs which add up
to a total of 22GB of memory. But, running the model on a
subset(20GB) of ILSVRC 2012 with a batch size of 64 and 40
epochs would still take a day. The original paper has trained for
300 epochs. I need to tune the model’s parameters meaning
to get the correct parameters which would lead to multiple
runs. This is clearly not possible with the time limit of this
project. Considering the reasons above, I decided to use the
CIFAR-100 dataset which is 162MB in size. Also, I moved
back to GCP since my VP could handle the CIFAR-100 dataset
efficiently.

One detail I have to point out is I have used ima-
genet2012 subset combining it with the ILSVRC 2012’s val-
idation dataset. The original validation dataset has been used
as the training data and imagenet2012 subset has been used
as a validation set. I combine them to create a larger dataset.
I swap them because the training date should be more than
the validation data. Otherwise, those validations that could be
used to train data had been wasted.

D. Problem Formulation and Design Description

To overcome my limited resource problem, I have decided
to use a local machine for my project. My local machine has
2 1080Ti GPUs which would add up to 24 GB of RAM.
Also, I have decided to use CIFAR-100 and ImageNet2012
subsets if time permits. Both datasets are a lot smaller com-
pare to ImageNet 22K the original paper used. I prioritize
tuning my model on the CIFAR-100 dataset because it is
faster and I could implement more experiments. Training
results are needed for the parameter tunning, there would
be a higher chance that I could get a good result with a
smaller dataset. The system and software for this project are
fairly simple. There would be a few python files that form
the layer component and utility that are necessary for the

Swin Transformer. Then There would be the main python file
called ’swimtransformer’ that used components and utilities
I mentioned before to build a Swin Transformer Block and
model. Last but not least, there would be the main Jupiter
notebook that acts as a user interface. It would interact with
the main python file and trigger training.

IV. IMPLEMENTATION

In this section, I am going to present my replication of the
original Swin Transformer model. In my implementation, I
have replicated the entire structure of the Swin Transformer.
I will first present the data set I used. Then, I will present
an overview of my architecture. After that, I will present my
architecture in detail by mimicking how my architecture will
deal with image inputs to achieve different tasks, such as
image classification. Last but not least I will talk about the
Software Design I used.

A. Data

Datasets have been used in my project. The first one
is CIFAR-100. The second one is magenet2012Subset with
10pct.

The CIFAR-100 is a standard dataset. It contains 100 classes
of images with 600 images in each class [4]. Among the 600
images in each class, there are 500 images for training and
100 for testing [4]. Also, there are 20 superclasses to which
each of the 100 classes would belong [4]. The dataset has a
fixed image size of (32, 32), Therefore I do not need to do
preprocessing. I could simply load it from Keras.

The ImageNet 2012 subset is a subset of the original
ILSVRC2012 dataset. Same as CIFAR-100 it is a standard
dataset. It shares the validation dataset with the ILSVRC2012.
it contains 128116 training examples and 50000 validation
examples [6]. I pre-processed this dataset by first converting
the raw image to TensorFlow data type float32. The original
ImageNet datasets contain images of various sizes. I need to
unify the size to (224,224,3) to follow the original paper. First,
I resized the image to (256,256,3) in my case. Then, I use
CenterCrop to crop the image to size (224,224,3) Lastly, a
Normalization layer is applied.

B. Deep Learning Network

The same as the architecture in the paper, roughly speaking,
my architecture consists of an image partition block and four
consecutive stages. The image partition block is used to gener-
ate patches of a given size and embeddings of each patch. The
four consecutive stages (we call a Swin Transformer layer in
our implementation) are very similar in terms of architecture.
In each stage, there will be a number of Swin Transformer
blocks and patch merging steps to achieve down-sampling.
By this down-sampling step (with a down-sampling rate of
2), the architecture can capture the hierarchical structure of
images. Different variants of the Swin Transformer proposed
in the paper have different numbers of blocks. For instance,
Swin-T has 6 blocks in the third stage and Swin-S has 18
blocks. Usually, there is a multiplier of two consecutive Swin



Transformer Blocks. The main difference between the two
consecutive Swin Transformer blocks lies in that an attention
layer is applied to partitioned windows in the first block
while the attention layer is applied to shifted windows in
the second block. Put differently, in the second block, we
will first shift images before applying masked attention such
that the architecture can capture cross-window connections.
The first block will be used to capture connections over non-
overlapping local windows. In such a setting, this architecture
can capture both inner and intra-window attention A concrete
overview of my architecture is shown in Figure 1.

First of all, we would have an image partition block that
partitions the input images into patches. This block is achieved
by using tensorflow.keras.layers.Conv2D. I set the kernel size
to be (patch size, patch size) and the stride to be patch size. As
a result, I can get the embedding for each patch. Then there
would be a dropout layer used in the training process to avoid
over-fitting.

Then we would get to the four stages (we call it four
layers), which are the main blocks for the architecture. As
we mentioned before, the four stages are very similar except
that the last layer will not have a down-sampling layer.
In each Swin Transformer layer, there would be multiple
Swin Transfomer Blocks (a multiplier of 2 usually). Roughly
speaking, each block is a standard transformer block, though, it
is performed over local windows instead of the entire image in-
put. Inside the block, I will first need to partition the input into
windows of a pre-specified size. Then after performing a layer
normalization, an attention layer is applied to local windows
obtained from the previous step, followed by a normalization
layer and a fully connected layer. In the end, I will reverse
the partition step to recover the original input shape. This
first block architecture only captures the connections between
non-overlapping local windows. The second block architecture
will be used to capture cross-window connections. In order to
achieve this goal, the original paper proposed to perform a
cyclic shift over the input image first and then re-perform the
previous block over the shifted image. However, one problem
is that cells in the current partitioned local windows may not be
neighbors in the original image. Following the original paper,
we need to generate an attention mask, which is used to limit
the attention to a portion of the window so that only cells that
are adjacent would be considered. Concretely, I will add 0 to
the attention scores of the cells that are adjacent to the target
cell in the original image whereas I will add a large negative
number (in my implementation, I use -1000) to the attention
score of those that we want to omit. After I perform softmax
over the modified attention scores, non-adjacent cells will have
an attention score close to 0. In such a way, I can only attend
to adjacent cells even if the image is shifted.

In a nutshell, in this block, I first apply a normalization
layer. Then if this window needs to be shifted I would roll the
windows and refill blanks, inspired by the explanation in this
blog 4. Then, the image would be partitioned. Meanwhile, if

4https://amaarora.github.io/2022/07/04/swintransformerv1.html

the image is shifted, I will generate neighboring indices for
each cell and then generate attention masks5. After that, the
(masked) attention layer I mentioned before would be applied
over local windows. Next, the image would be recovered by
reversing the partition. Also, I would reverse the roll if this is a
shifted window. The dropout layer and multi-layer perception
will follow. This concludes the architecture of an entire Swin
Transformer Stage. As mentioned, there will be four stages like
this. As a result, this architecture would be applied four times
with different parameters (such as different attention heads).

I will now talk about the downsampling process in detail.
Following each Swin Transformer layer, we would have a
downsampling layer(except for the last stage). In the down-
sampling, we use a down-sampling rate of 2. In detail, we first
partition an image into 2-by-2 windows. In each 2*2 window,
we then split it into 4 cells and stack them along channels. As
shown in Figure 2, an image is partitioned into four windows
(i.e., x0, x1, x2,x3). For each such window, we initially have
X000, X001, X010, and X011 each with C channels. Then,
these four cells are stacked along channels, which leads to 4C
channels. Then they will go through the normalization layer
and the number of channels will be reduced to 2C channels by
using a dense layer. As a result, this down-sampling processing
halves the height and width of images and doubles the number
of channels.

A detailed structure of the multi-head attention module is
shown in Figure 3. When an image comes in, it will first be
normalized. Then we use the parameter shift size to denote
whether we need to shift the image and create an attention
mask. If the shift size is larger than 0, we will shift the image
and create an attention mask such that only nearby cells will
be used in attention. Then we will partition the (shifted) image
and calculate attention scores. Then, again, if the image has
been shifted, we will reverse the shift. Then we will reassemble
the windows in order to recover the original size of the image.
In the end, we will use the dropout, normalization, and MLP
to finish the entire block.

Figure 4 is an illustration of how the attention mask and
shift are implemented. The matrix on the left represents the
original images. Then the entire image had been shifted by 2x2
toward the top-left direction. This would result in the yellow,
pink, and blue section is outside of the image size. So, we
will move those three patches to the bottom right and place
them in the position shown in the middle of the graph. So
far, the image is shifted. Then, the image is partitioned into
four windows again where those black lines on the rightmost
image represent the border of those four windows. As we can
observe, in three of the windows there are pixels that are not
from the same patch. As a result, we need to use masks to
rule out the influence of pixels that are not in the same patch.
The numbers in the image will help me distinguish whether a
pixel is in the same patch or not.

After the four transformer layers, there will be a normaliza-
tion layer. Then, global average pooling would be applied to

5when the image is not shifted, no attention mask is needed.
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aggregate information across channels. Finally, a dense layer
with an activation function softmax will be used to achieve the
image classification task.

C. Software Design

My software system is shown in figure 5. On the very top,
I used a Jupyter Notebook 6 as a user interface. This is where
all of the results would be visualized and the training process
been triggered. After we start training the mode, the Jupyter
Notebook would call the main Swin Transformer Python File
7. Then the main Swin Transformer Python File would use
functions and classes in ’layers.py’ 8 and ’utils func.py’ 9

to construct the model. Then the dataset would be used to
train my model. After the training, the model would be saved
locally. In the future, the user could load those models back
to make predictions.

V. RESULT

A. Project Results

I would show the results respectively separated by datasets.

6https://github.com/ecbme4040/e4040-2022Fall-Project-DLNN-yz4359/
blob/main/main experiment cifar100.ipynb

7https://github.com/ecbme4040/e4040-2022Fall-Project-DLNN-yz4359/
blob/main/swimtransformer.py

8https://github.com/ecbme4040/e4040-2022Fall-Project-DLNN-yz4359/
blob/main/layers.py

9https://github.com/ecbme4040/e4040-2022Fall-Project-DLNN-yz4359/
blob/main/utils func.py



Fig. 5. Top level flow chart for my software.

B. CIFAR-100

I will first show the result for the CIFAR-100 dataset
grouped by parameters. Then, I will show all of the results
in a table and present the best model among 24 models. All
of these models have been saved to the liondrive.

All of the CIFAR-100 models have a learning rate of 0.001.
The Number of Blocks for each stage is set to 1,1,2,1. The
Number of Heads for each block is set to 2, 2, 4, 8. Batch Size
TABLE III is the influence of Batch Size on the model. All the
models have the same parameter(except the Batch Size) with
Window Size=2, Embedding Dimension=32, Max Drop Layer
Probability=0.15, Dropout=0.1, and Attention Dropout=0.05.

TABLE III
MODEL ACCURACY GROUP BY THE BATCH SIZE.

Batch Size Accuracy Top5-Accurarcy
128 0.4143 0.6872
256 0.402 0.6667
512 0.3965 0.66
1024 0.3882 0.6559
∗TrainedonCIFAR100datasetwith2GTX1080Ti

Window Size
TABLE IV is the influence of Window Size on the model.

All the models have the same parameter(except the Window
Size) with Batch Size=512, Embedding Dimension=32, Max
Drop Layer Probability=0.15, Dropout=0.1, and Attention
Dropout=0.05.

Embedding Dimension
TABLE V is the influence of the Embedding Dimension on

the model. All the models have the same parameter(except
the Embedding Dimension) with Batch Size=512, Window

TABLE IV
MODEL ACCURACY GROUP BY THE WINDOW SIZE.

Window Size Accuracy Top5-Accurarcy
2 0.3965 0.66
4 0.4146 0.6731
8 0.398 0.6594
∗TrainedonCIFAR100datasetwith2GTX1080Ti

Size=4, Max Drop Layer Probability=0.15, Dropout=0.1, and
Attention Dropout=0.05.

TABLE V
MODEL ACCURACY GROUP BY THE EMBEDDING DIMENSION.

Embedding Dimension Accuracy Top5-Accurarcy
16 0.3878 0.6803
32 0.4146 0.6731
64 0.4218 0.6752
128 0.01 0.05
∗TrainedonCIFAR100datasetwith2GTX1080Ti

Max Drop Layer Probability
TABLE VI is the influence of the Embedding Dimension on

the model. All the models have the same parameter(except the
Max Drop Layer Probability) with Batch Size=512, Window
Size=4, Embedding Dimension=64, Dropout=0.1, and Atten-
tion Dropout=0.05.

TABLE VI
MODEL ACCURACY GROUP BY THE MAX DROP LAYER PROBABILITY.

Max Drop Layer Probability Accuracy Top5-Accurarcy
0.1 0.4162 0.6709
0.15 0.4218 0.6752
0.2 0.01 0.05
0.25 0.4318 0.6897
0.3 0.4304 0.688
0.35 0.4304 0.6888
∗TrainedonCIFAR100datasetwith2GTX1080Ti

Dropout
TABLE VII is the influence of the Embedding Dimension on

the model. All the models have the same parameter(except the
Max Drop Layer Probability) with Batch Size=512, Window
Size=4, Embedding Dimension=64, Max Drop Layer Proba-
bility=0.3, and Attention Dropout=0.05.

TABLE VII
MODEL ACCURACY GROUP BY THE DROPOUT.

Dropout Accuracy Top5-Accurarcy
0.1 0.4162 0.6709
0.15 0.44 0.7045
0.2 0.4448 0.7086
0.25 0.4383 0.7109
0.3 0.4396 0.7125
0.35 0.4381 0.7207
∗TrainedonCIFAR100datasetwith2GTX1080Ti

Attention Dropout



TABLE VIII is the influence of the Embedding Dimension
on the model. All the models have the same parameter(except
the Max Drop Layer Probability) with Batch Size=512, Win-
dow Size=4, Embedding Dimension=64, Max Drop Layer
Probability=0.3, and Dropout=0.3.

TABLE VIII
MODEL ACCURACY GROUP BY THE ATTENTION DROPOUT.

Attention Dropout Accuracy Top5-Accurarcy
0.05 0.4396 0.7125
0.1 0.4406 0.7125
0.15 0.4495 0.7301
0.2 0.4418 0.7287
0.25 0.4442 0.7193
0.3 0.4423 0.7147
∗TrainedonCIFAR100datasetwith2GTX1080Ti

All Experiment result for CIFAR-100
All of the experiment I have performed on CIFAR-100

is in TABLE IX below. The best model parameters are
Batch Size=512, Window Size=4, Embedding Dimension=64,
Max Drop Layer Probability=0.3, Dropout=0.3, and Attention
Dropout=0.15. This would achieve overall accuracy of 44.95%
and top-5 accuracy of 73.01%.

C. ImageNet2012 subset

For the ImageNet2012 subset, I have the first train is 40
epochs, and the second train is 200 epochs. The parameters
described in TABLE II were used in both runs. For the first
train, I got an accuracy of 10.08% with the top 5 accuracy
being 25.5%. For the second train, I got an accuracy of 13.79%
with the top 5 accuracy being 31.15%.

D. Comparison of the Results Between the Original Paper and
Students’ Project

My best model achieves an overall accuracy of 44.95% and
top-5 accuracy of 73.01%. The original paper has achieved an
accuracy of 81.3% with Swin-T variance on image classifi-
cation on ImageNet 1K dataset [1]. ImageNet 1K is a much
larger dataset than CIFAR-100. As a result, the parameters the
original paper used does not apply to my dataset. This is why I
have reduced the size of my Swin Transformer greatly to only
having 1,1,2,1 block per stage. Note that the original Swin-T
has 2,2,6,2 blocks per stage. After all of the experiments with
CIFAR-100, I realized my model would still be overfitting
badly disregarding that I have tried to limit its capacity. The
CIFAR-100 dataset is simply too small for my model. I have
tried a lot more sets of parameters than those that are presented
in this report. However, none of them performed significantly
better.

Also, it would not be fair to compare two models on a
different dataset. Therefore, I compared it to another paper
that uses CIFAR-100 and tested it with Swin Transformer. In
the paper ”ML-Decoder: Scalable and Versatile Classification
Head”, they have achieved an accuracy of 95.1% with the
Swin L and ML Decoder [5]. However, their paper is mainly
focusing on ML-Decoder. They did not provide details about

their implementation of Swim L. However, I think the dif-
ferences in the performance between these two models lie
in three aspects at least. First, they used a larger model -
namely, Swim L is a larger variant with greater model capacity
compared to Swin T, while the largest model I could set up
in my GCP/local machine is even smaller than Swin-T [1].
Second, due to the same issue of the limited computational
power, I can only set the batch size to 64/128 at most. Usually,
the batch size should be 1024 in the original paper [1]. Third,
I notice that they might resize the images in CIFAR-100 to a
larger size. However, they did not mention that the size has
been changed [5]. I have tried to resize it as well; however, my
computational power failed to handle such a big model with
such high-resolution images. There may be other reasons for
the differences. If they could provide enough details on how
they performed the classification task over cifar100, I will be
more confident in discussing the difference in performance.
Additionally, I realized that data processing and augmentation
will impact the model performance significantly.

When applying my model to the ImageNet2012 subset, my
model was still overfitting. For the 200 epochs run, the final
training accuracy reached 44.75%. This is not contradictory
to my hypothesis above because I have increased model
capacity significantly for the ImageNet2012 subset. I may
have overestimated the capacity needed and did not set the
right parameters. I did not successfully find the more optimal
parameters for both datasets. This was not expected. I tried
very hard given the limited computational resources. GCP is
unusable for the ImageNet2012 subset. It could generate the
subset properly. But, before starting training the model, the
kernel would die. What’s more, I tried to train the model
directly in the ssh terminal. However, TensorFlow would kill
the program because of the memory limit. When I trained
the model with ImageNet 2012, each training would take
substantial time. This makes optimizing the model unpractical
given I only have myself on the team.

E. Discussion / Insights Gained

One of the most important things I learned from this
project is the Swin Transformer is computationally demanding.
The original paper was able to pre-train the model with
ImageNet 22K for 90 epochs with a batch size of 4096. This
is unimaginable for my setup. I could not possibly achieve this
because I do not have access to machines that could handle
the batch size of 4096. As mentioned above, the largest batch
size that would not crush my GPUs is 74. Even if a very small
batch size was used, I still would not be able to pre-train the
model efficiently one epoch for the entire dataset would cost
a few days. This really makes me think that the development
of deep learning would speed up greatly with the evolution
of hardware. In 2016, a top-of-the-line GPU GTX1080Ti has
3584 CUDA Cores. Today, only 6 years later the newest
4090 has 16384 CUDA Cours. Not to mention architecture
improvements like memory speed and size difference(11GB vs
24GB). This cross-domain influence is fabulous and amazing.



TABLE IX
DETAILED MODEL ACCURACY FOR CIFAR-100

Batch Size Window Size Embedding
Dimension

Max Drop
Layer Probability Dropout Attention Dropout Accuracy(%) Top5-Accurarcy(%) Loss

512 4 64 0.3 0.3 0.2 44.18 72.87 2.86
256 2 32 0.15 0.1 0.05 40.2 66.67 3.16
512 4 64 0.1 0.1 0.05 41.62 67.09 3.09
512 4 64 0.3 0.3 0.25 44.42 71.93 2.91
1024 2 32 0.15 0.1 0.05 38.82 65.59 3.23
512 4 64 0.3 0.2 0.05 44.48 70.86 2.95
512 4 32 0.15 0.1 0.05 41.46 67.31 3.11
512 4 64 0.3 0.3 0.15 44.95 73.01 2.85
512 4 64 0.3 0.25 0.05 43.83 71.09 2.97
512 4 64 0.2 0.1 0.05 1 5 4.61
512 4 64 0.15 0.1 0.05 42.18 67.52 3.08
512 4 64 0.3 0.35 0.05 43.81 72.07 2.86
512 4 64 0.3 0.3 0.1 44.06 71.25 2.94
512 4 64 0.3 0.3 0.05 43.96 71.25 2.93
512 4 64 0.3 0.15 0.05 44 70.45 2.96
512 4 128 0.15 0.1 0.05 1 5 4.61
512 4 64 0.3 0.1 0.05 43.04 68.8 3.03
512 4 64 0.35 0.1 0.05 43.04 68.88 3.05
512 4 64 0.3 0.3 0.3 44.23 71.47 2.9
512 2 32 0.15 0.1 0.05 39.65 66 3.19
512 4 16 0.15 0.1 0.05 38.78 68.03 2.91
512 8 32 0.15 0.1 0.05 39.8 65.94 3.21
512 4 64 0.25 0.1 0.05 43.18 68.97 3.04
128 2 32 0.15 0.1 0.05 41.43 68.72 3.08
∗TrainedonCIFAR100datasetwith2GTX1080Ti

The influence of pre-train the model would also influence
the experiment results a lot. The original paper has pre-trained
the model with ImageNet-22K [1]. This would improve the
baseline accuracy of the model because we are randomly
initiating weights and did not use pre-train (we are unable
to pre-train the model with the setting of the original paper
due to limited resources). It would not be possible to achieve
the same experiment result without pre-training. Another key
influence is the pre-processing methods for the experiment.
Without knowing the detailed methods of how the data was
pre-processed, I could not recreate the experiment. Also, pre-
processing would increase the accuracy of the model. This
would be one of the reasons my model did not perform as
well.

Another insight I got is a lot of experiment details could
influence the experiment result. Even if the detailed structure
was presented, a lot of detailed parameters would usually
be omitted. For example, the original paper did not mention
the parameters they used for dropout or normalization layers.
The setting of these detailed parameters would influence the
experiment result. My experiment might use different settings
or methods from the original paper. This is the reason that in
the Computer Science domain open sources are encouraged.
So, all of the details could be found in the source code.
However, there may not be corresponding descriptions in the
paper that refer to detailed parameters in the source code.

Last but not least, a tremendous amount of computational
power is needed in projects like Swin Transformer. A person
usually would not have access to such a quantity of computa-
tional resources. Therefore, a large machine learning project

would need a team or a center to perform the experiment and
work together. It is not a good idea to work alone in the Deep
learning and machine learning domain.

VI. FUTURE WORK

There is plenty of future work to do. I have completely
implemented the entire structure of the Swin Transformer.
My model could be pre-trained with better hardware on the
original ImageNet 22K datasets. Then it could be finetuned
on ImageNet 1K. In addition, all four variances that were
mentioned in the original paper could be rebuilt and compared.
These are the main work that could be done to recreate the
original experiment result.

VII. CONCLUSION

All in all, in this project the entire architecture of the
Swin Transformer has been recreated. On Cifar100, my model
achieved 46.7%(80 epochs) total accuracy with the Top 5
accuracy being 72.96%(80 epochs). The objective accuracy is
not achieved. But, my model is working. The main constrain
are not solvable by myself. In the future, it would be amazing
if my model could be reused to train on the original dataset
with capable machines.
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IX. APPENDIX

A. Individual Student Contributions in Fractions

I work alone without teammates. Thurs, all of the work are
contributed by myself. Also, I would skip the table because
there is no need to do so.


